«Алгебра. 9 клас» Ю.І. Мальованого, Г. М. Литвиненко, Г. М. Возняк Готуємося до уроку


Назва«Алгебра. 9 клас» Ю.І. Мальованого, Г. М. Литвиненко, Г. М. Возняк Готуємося до уроку
Дата конвертації07.02.2013
Розмір445 b.
ТипУрок


Матеріали до уроків

За підручником

«Алгебра. 9 клас»

Ю.І. Мальованого,

Г.М. Литвиненко,

Г.М. Возняк

Готуємося до уроку

Використано матеріали Бібліотеки електронних наочностей “Алгебра 7-9 клас”.

Робота вчителя СЗОШ І- ІІІ ступенів

№ 8 м. Хмельницького Кравчук Г.Т.

Зміст

Для роботи виберіть потрібну тему, в якій слід вказати тему уроку.

Для переходу між слайдами: 1 клік миші, або використати кнопки керування діями

назад на початок

вперед на кінець

на 1 слайд повернутися

(додому)

Тема 5

Елементи прикладної математики

Пункт 8.2

Випробування і події.

Теорія імовірностей, як і будь-яка математична наука, оперує певним колом понять. Більшість понять теорії імовірностей описують за допомогою строгих означень, але є ряд основних, неозначуваних понять, як, наприклад, у геометрії поняття точки, прямої, площини. Одним із таких понять теорії імовірностей є поняття події.

Під подією розуміють те, про що можна сказати, що воно відбувається або не відбувається.

Будь-яка подія відбувається внаслідок випробування (або досліду).

Під випробуванням (або дослідом) розуміють ті умови, в результаті яких відбувається подія.

Наприклад, підкидання грального кубика — випробування, поява 3-ох очок на верхній грані кубика — подія; запитання вчителя — випробування, неправильна відповідь учня — подія.

Події прийнято позначати буквами А, В, С, ... . Усі події (явища), за якими ми спостерігаємо, можна поділити на три види:
  • вірогідні,

  • неможливі

  • випадкові.



Вірогідні події

Вірогідні події

Неможлива подія

Неможлива подія

Випадкова подія

Випадкова подія

Якими бувають випадкові події

Якими бувають випадкові події



Якими бувають випадкові події

Якими бувають випадкові події



Якими бувають випадкові події

Якими бувають випадкові події



Первинне закріплення вивченого матеріалу





















Запитання для самоперевірки



Схожі:

«Алгебра. 9 клас» Ю.І. Мальованого, Г. М. Литвиненко, Г. М. Возняк Готуємося до уроку icon«Алгебра. 9 клас» Ю.І. Мальованого, Г. М. Литвиненко, Г. М. Возняк Готуємося до уроку

«Алгебра. 9 клас» Ю.І. Мальованого, Г. М. Литвиненко, Г. М. Возняк Готуємося до уроку icon«Алгебра. 9 клас» Ю.І. Мальованого, Г. М. Литвиненко, Г. М. Возняк Готуємося до уроку
Отже, середнє арифметичне двох невід'ємних чисел не менше від їх середнього геометричного
«Алгебра. 9 клас» Ю.І. Мальованого, Г. М. Литвиненко, Г. М. Возняк Готуємося до уроку icon«Алгебра. 9 клас» Ю.І. Мальованого, Г. М. Литвиненко, Г. М. Возняк Готуємося до уроку
Математичною моделлю прикладної задачі може бути рівняння, нерівність, функція, система рівнянь або нерівностей
«Алгебра. 9 клас» Ю.І. Мальованого, Г. М. Литвиненко, Г. М. Возняк Готуємося до уроку icon«Алгебра. 9 клас» Ю.І. Мальованого, Г. М. Литвиненко, Г. М. Возняк Готуємося до уроку
Гарафік функції y=x2 – парабола, вершина якої збігається з початком координат, а віссю симетрії цієї параболи є вісь ординат
«Алгебра. 9 клас» Ю.І. Мальованого, Г. М. Литвиненко, Г. М. Возняк Готуємося до уроку icon«Алгебра. 9 клас» Ю.І. Мальованого, Г. М. Литвиненко, Г. М. Возняк Готуємося до уроку
У такому випадку розв'язування квадратної нерівності зводиться до розв'язання двох систем лінійних нерівностей
«Алгебра. 9 клас» Ю.І. Мальованого, Г. М. Литвиненко, Г. М. Возняк Готуємося до уроку icon«Алгебра. 9 клас» Ю.І. Мальованого, Г. М. Литвиненко, Г. М. Возняк Готуємося до уроку
Розповідають, що незвичайні здібності видатного німецького математика Карла Фрідріха Гаусса (1777-1855) почали виявлятися вже в ранньому...
«Алгебра. 9 клас» Ю.І. Мальованого, Г. М. Литвиненко, Г. М. Возняк Готуємося до уроку icon«Алгебра. 9 клас» Ю.І. Мальованого, Г. М. Литвиненко, Г. М. Возняк Готуємося до уроку
Перетворення (І) означає паралельне перенесення параболи у = х2 вздовж осі Oх вліво на 1 одиницю, а перетворення (ІІ) — розтягнення...
«Алгебра. 9 клас» Ю.І. Мальованого, Г. М. Литвиненко, Г. М. Возняк Готуємося до уроку icon«Алгебра. 9 клас» Ю.І. Мальованого, Г. М. Литвиненко, Г. М. Возняк Готуємося до уроку
Аргумент n другої функції може набувати лише натурального значення. Областю визначення другої функції є множина n натуральних чисел....
«Алгебра. 9 клас» Ю.І. Мальованого, Г. М. Литвиненко, Г. М. Возняк Готуємося до уроку icon«Алгебра. 9 клас» Ю.І. Мальованого, Г. М. Литвиненко, Г. М. Возняк Готуємося до уроку
Якщо на осі абсцис прямокутної системи координат розмістити варіанти хі, а на осі ординат – відповідні їм частоти nі, то можна побудувати...
«Алгебра. 9 клас» Ю.І. Мальованого, Г. М. Литвиненко, Г. М. Возняк Готуємося до уроку icon«Алгебра. 9 клас» Ю.І. Мальованого, Г. М. Литвиненко, Г. М. Возняк Готуємося до уроку
Нерівність |х|≤3, або |х-0|≤3, означає, що відстань від точки з координатою х до точки 0 не більша від 3, тобто не перевищує Таку...

Додайте кнопку на своєму сайті:
dok.znaimo.com.ua


База даних захищена авторським правом ©dok.znaimo.com.ua 2013
звернутися до адміністрації
dok.znaimo.com.ua
Головна сторінка